AN OBJECT-ORIENTED SGML/HYTIME COMPLIANT MULTIMEDIA DATABASE
MANAGEMENT SYSTEM®

M. Tamer Ozsu, Paul Iglinski, Duane Szafron, Sherine EI-Médamil Manuela Jungharihs

Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
{ozsu, iglinski, duane, sherine}@cs.ualberta.ca

ABSTRACT

We describe the design of an object-oriented multimedia
database managementsystem that can store and manage
SGML/HyTimecompliant multimedia documents.The system
is capableof storing, within one database different types of
documents by accommodating multiple document type
definitions (DTDs). This is accomplished by dynamically
creating object typesccordingto elementdefinitions in each

in many of these attempts. Some of them use the DBMS
technology only to store and manage meta-data,while the
actual multimedia objects are storgdordinary files with very
little integration betweenthe DBMS and these files. This
restricts the role of DBMSs and makes it difficult (if not
impossible) to apply regular databaseaccess methods to
multimedia data. Othersstore someof the multimedia objects
(e.g., text and stilimages)as binary large objects (“‘BLOB"s)
in relational DBMSs. Even though this puts some of the

DTD. The system also has tools to automatically insert marked- multimedia objectsn a databasejt is usually not possible to

up documentsinto the database.We discuss the system
architecture, design issues and the system features.

1. INTRODUCTION

Traditionally, multimedia applications have not fully exploited

databasemanagementsystem (DBMS) technology. Mostly
they have used DBMSs to store meta-information and have
stored multimedia objects in flat files. Tlw®nnectionbetween
the DBMSs and the object files is usually non-exist@ntvery
loose), requiringthe application programsandusersto access
both of the repositories independently. This is agreferable
courseof action for three major reasons.First, file systems
leaveto the userthe responsibility of formatting the file for
multimedia objects as well as the managementof a large
amount of data. The developmentof multimedia computing
systemscan benefit from traditional DBMS services such as
data independence (data abstraction), high-level acbessgh
query languagesapplication neutrality (openness)controlled
multi-user access(concurrency control), and fault tolerance
(transactions, recovery). Second, multimedia objects have
temporal and spatial relationships that must be taken into
accountfor synchronizationanddisplay of information (e.g.,
synchronization of an image witits audioannotation). These
relationships should be modeled explicitly as parthef stored
data. Thusgevenif the multimediadatais storedin files, their
relationships need to be stored et of the meta-information
in some DBMS. Finally, the size and complexity rofiltimedia
objects require special treatmentin storage, retrieval, and

transmission. DBMS technology, especially the technology of multimedia data; interoperability issues will

object DBMSs, is particularly well suited for tmepresentation
and storage of this type of data.

Recently, a number of multimedia projects that have used
DBMSs have beenreportedin the literature (see [PS97] for a
survey). However,there are a numberof common deficiencies

provide database functionality over these objects. For
example, content-basedquerying of BLOBs is not possible
since the DBMS treats them as byte strings whose
interpretationis left to the application. Still others develop
and implementheir own one-of-a-kindmodelsfor multimedia
data.Unfortunately, this requireseverything to be developed
from scratch since various tools based on international
standardscannot be used together with these one-of-a-kind
systems.

In this paper, we report our work in developing an object
DBMS to store and manageSGML/HyTime [Gold90, DD94]
compliant multimediadocuments.Three points are important
about our work. First, even though we heavily use DBMS
technology to manageultimediadata, we are not arguing for
the storage ofll multimediadatain a databaseln fact, most
of the multimedia data currently reside in traditional fikesich
will needto be incorporated into multimedia information
systemsin an interoperableenvironment. The argumentput
forth hereis that the users’ accessto this data should be
managedby a DBMS. We propose to accomplish this by
storing and managing the structure of all multimedia
objects, as well as some of the objects themsealves object
databaseandproviding strong links from this DBMS to the
particular servers (e.g., image file systearsvideo-on-demand
systems) that store the remainder of the data. Thus,
interoperability, the secondimportant point, is a central
aspectof our work. In this paper our emphasisis on the
databasemodels and associatedtools to store and manage
be reported
elsewhere. Finally, we chose to base our work on the
SGML/HyTime standard for representing multimedia
documents.This allows usto build an entire systemby using

commonly available tools that work with these standards, most

importantly, SGML parsers, authoring tools and browsers.
Moreover, adopting the widely used document standard of

* This research is supported by Canadian Institute for
Telecommunications Research (CITRpe of the Networks of Centres
of Excellence funded by the Government of Canada.

T Current address: Vicom Multimedia Inc., Edmonton, Alberta, Canada.
Tt Currentaddress:intelligent Marketing Systems,Edmonton, Alberta,
Canada (Manuela_Junghanns@imsi.caMaiden name: Manuela
Schone.

www.manaraa.com

SGML allows pre-existing documentcollections to be readily
incorporatedinto our system. Usersof SGML can effectively
use the system without a steep learning curve.

Our research task of modeling multimedia SGML documants
implementing an object database management syRiettihem
which can support a ricueryinterfacehhas beena non-trivial
endeavor. We hope our experience and accomplishments
benefit other research in this area.

The system describedin this paper is part of the larger
BroadbandServicesProject that is being conductedby five
institutions in Canada with support from the Canadiastitute
for Telecommunications ResearcfThe objective of the larger
project isto developa softwareinfrastructureandto definean
API that is suitablefor a wide range of broadbanddistributed
multimedia applications [WLE+97]. The multimedia DBMS
component of this project covers a broad spectruractivities
from the design and implementation of appropriatedatabase
type system (schema)to the development of application-
specific query models and languages that suppontent-based
access to multimedia objects. This paper focuses cougle of
components of the multimedia DBMS; issues saslvideo and
image modeling are reported elsewhere [LOS966597] and
other components including multimedia query languages,
image and video indexing will be reported in the future.

We assumethat the readeris familiar with SGML/HyTime and
we do not repeatthe basic characteristicsof these standards.

Readers can refer to the standards themselves [ISO86, ISO92] or

to the various books that describe them (e.g., [Gold90,
DD94]). Even just a familiarity with HTML, the most

DTD DTD
DTDs 7| Parser > Manager*
Type || o
Generatori D | Multimedia
Database
SGML |)’/
Marked-u nstance
Documen‘t)s 2 Parser 7 | Generator :
| DBMS
- A &
| Queries/Responses
O O O
| Users
SGML/HyTime DBMS Processin
Processing

Figure 1. Complete Processing Environment

store documents whose markup conforms to these DTDs.

The systemshouldfacilitate the automaticinsertion of
multimedia documentsinto the databaseand provide
facilities for querying theselocumentsboth with respect
to their contents and with respect to their structure.

ubiquitous SGML document type, will help in understanding the The systemdescribedhere satisfies these constraints. It is a

level of SGML detail presented here.

The organizatiorof the rest of the paperis asfollows. In the
next section, we present tlechitectureof the systemthat we
have developedSections3-5 focus on the core aspectsof our
system: the type system that we have implemented, the
management of multiple document structures, anchtitematic
insertion of documents into thdatabaseSection6 containsa
review of someof the related work and comparesour system

distributed (client-server),object-orientedsystem that allows
coupling with other servers(in particular continuous media
servers) and handles dynamic creation of objgoes basedon
DTD elements.

The system iduilt asan extensionlayer on top of a generic¢
object DBMS, ObjectStore [LLOW91]. The extensions
provided by the multimedi®BMS include specific supportfor
multimediainformation systems. The developmentof a type

with others. Section 7 discusses the current status of the systensystem that supports commaonultimediatypes is at the heart

and reviews some of the improvements that are underway.
2. SYSTEM OVERVIEW

One of the strengths dPBMSsis their ability to managedata
on behalf of multiple applications and enable data sharing
among them. DBMSs provide this service in a transparent
manner, shielding the applications from the particulars of

physical data organization, distribution and performance
considerations(query optimization). If DBMSs areto support
multimedia applications, the same services neebetextended
to multimediadata. Within the context of an SGML/HyTime

compliant system, this means the following:

1. The system has to be able to model all types of
multimedia data (video, audio, text, images), not only

simple data such as character strings and numeric values.

2. The system needsto be open and extensible, both in
terms ofthe types of datait can manageandin terms of
its architectureso that it can accommodatedifferent
servers and applications.

3. The systemhasto be able to store and managedifferent
types of documents in one database. In SGML parlance,
should be able to dealith multiple DTDs andbe able to

of the multimedia extensions. This paper focuses on the
extensible kernetype systemaswell asthe supportingtools
to facilitate automatic typereationfrom a given DTD andthe
automatic insertion of conforming documents into the
database.

This architectureis open so that it can accommodatevarious
multimedia servers. Many of these are file system servers
without full database management functionality (e.g.,
querying). Iffile systemserversare used,but the applications
requiredatabasdunctionality, then a multimedia DBMS layer
can be placed on top of the file system servers and the
underlying storage system can be modified accordingly.
Alternatively, links can be provided from the multimedia
DBMS to the various servemshich may be locatedat different
sites of a distributedsystem.In our prototype configuration,
for example, the audio and video objects are storedsieparate
continuous media servgMNH96] while meta-dataaboutthese
objects are stored in our multimedia DBMS.

! ObjectStore is a generic ODBMS in the sense that it doesn’t have native

multimedia support in its base product. The latession (Version 5) of
ObjectStore incorporates objectanagersas add-on productsproviding
limited support for multimediaatatypes. Theseclasslibraries provide
some partial solutions to multimedia issues, which may benefit our
implementation in future releases.

www.manaraa.com

Another aspect of our system is its integration of tools
associatedvith the managemenbf SGML/HyTime databases.
These include a DTD parser and manager, and a SGML parser &

instance generatoiTheseare discussedn detail in Sections5
and 6. Overall, the system deals withth databasgrocessing
and SGML/HyTime processing issues (Figure 1).

3.MULTIMEDIA TYPE SYSTEM

In designinga type system for an SGML/HyTime compliant
DBMS, four issues need to be addressed [OSEV95]:

.

The different media componentsof the document(i.e.,
text, image, audio, video, argynchronizedtext) needto
be modeledandstoredin the database.Theseare called
monomedia objects The design of their storage

Monomedia
Object

Variant 1

Data Stream 1

Variant 2

Variant

Variant n

III\I

Figure 2. Variants of Monomedia Objects

structures in the database is critical for good performance.

These fundamentally physicabjects are modeledin our
atomic type system.

A representationis neededfor the document’'slogical
structure. Not every multimedia information system
represents the document structure explicitly. For
example,a multimediasystemusing postscriptfiles for
documentsignores the hierarchical structure of the
document. Explicit representation of the structure
facilitates querying and presentation. This logical,
structural dimension of documentsis modeled by our
element type system.

In multimedia documents,one has to deal with the
representatiorof the spatial andtemporal relationships
between monomedia objects. These relationships are
important for presentation purposes — spatial
relationships are used to model the placementof the
various components on the screen while temporal
relationships are essential for the synchronization of
monomedia objects during presentation (e.g., audio
synchronization with video or captioned text with

hardwareandthe desiredquality and cost, different variants of

the same monomediaobject can be retrieved and displayed.
Moreover, continuousnediaobjects, suchas audioandvideo,
may consist of a number data streamsSome video aniémage
compressiontechnologies,for example, utilize a base stream
that can be merged with enhancemstmeamsto obtain higher
quality of service levels. Similarly, an audio variant might
provide quadraphonic sound with four data streams, one for each
channel. It is important to be able to model these
relationships betweenmonomediaobjects, their variants and
the data streams that make e@chvariant, becausemultimedia
applications need to access each of these objects coherently.

Figure 2 shows a monomediaobject with different QoSlevels
representedy different variants. Variant 1 consists of Data
Stream 1; Variant 2 share®Data Stream 1 with Variant 1, but
also contains Data Stream 2. In general, the presentation
quality is higher if more datastreamsare used. Therefore,the
QoSlevel of Variant 2 is higher than of Variant 1. In this
example Variant 3 and Variant n consist of the samestreams

video). Thesesynchronizationrequirementsas well as
hyperlinking, are modeletty the HyTime componentof
the element type system..

Meta information aboutthe DTD elementsand instance
creation functionality are necessary for document
insertion and queriesaboutdocumentstructure. A meta-
type system can satisfy these requirements.

We discuss below how owystemhandleseachof theseissues
within the framework of an object DBMS. In this context,
“modeling” refers to the desigaf atype systemthat supports
the representation of various system components.

3.1 Atomic Type System

Our atomic type system consists of the types that are defmed
model monomediaobjects. This part of the type system
establishes the basic types that are used in multimedia
applications.

Atomic
Monomedia DataStream Variant
AudioMgdia TextMedia NCMType T CMType

AtomicCompoun
) . 1 Text

VideoMedfa ImageMedia

AtomicText

AtomicVideo AtomicAudio

TextMedia

Atomiclmage AtomicSText

Figure 3. Atomic Type System

One ofthe important considerationsin the designof the type

systemis quality-of-service (QoS) requirements.Monomedia
objects are associatedwith specific QoS parametersthat are
needed for presentation purposes. For example, the QoS
parameterf an image can be the format (e.g., JPEG, GIF,

TIF), size, resolution, and color depth. For one logical

monomediaobject, there can be a numberof concreteobjects
that canbe distinguishedonly in their QoS parametersThese
concrete objects are called variants of a logical monomedia
object. During QoS negotiation, dependingon the available

but may differ in other QoS parameters, such as maximum jitter,
frame loss or delay.

The type systenfor atomic types is depictedin Figure 3°. All
atomic types are subtypesof the abstractsupertypeftomic,
which is the root type in the Atamic type system.Atomic

2 Abstract supertypes are displayed in bfddt, whereasconcretetypes
are displayed in a normal font.

www.manaraa.com

has one data member, the logical identifigr which storesan
SGML ID. Eachelementutilizing an atomic type requiresan
SGML ID attribute. SGML requiresthat this ID be unique

throughout the document. The details of the type definitions are

omitted here due to spacelimitations—they are provided in
[Sch96]; in the remainderof this sub-section,we provide an
overview of the semantics of the atomic types.

DataStream iS an atomic type for streams. A stream

identifies a particular file on the continuous media file server. It

has data membersfor meta datarelatedto the data streams,
namely size and a universal object identifier.

Instances of Uariant subtypes hold the monomedia
representation and the variant's QoS information. Type
Uariant contains functions to access Qp&rameterghat are
commonto all variants. There are two abstract subtypes of
Uariant, NCMType for non-continuous media such as texid
images,andCNType for continuous media such as audio and

Element

HyTime

Elements

Atomic

Type
System

Standard
Elements

Figure 4. Element Type System

video. This distinction is made since non-continuous and
continuous media are handleddifferently in the system. The
difference betweenthe two types is that instances of types
derivedfrom NCMType store the raw mediain their objects,
whereasinstancesof types derived from CHType have only
meta-informationstoredaboutthe continuous media streams,
which themselvesreside on the continuous media server.
NCMType and CMType have subtypes for the types of
monomedia objects that they model (AtomicSText
correspondsto synchronized text). A composite type,
AtomicCompoundText, contains a collection of
AtomicText to represent the textual componentdafcuments

this approachdoesnot take full advantageof object-oriented
modeling facilities, most importantly behavioral reuse. Instead
of aflat type system,we implementa structuredtype system
where some of the higher-level types are reused through
inheritance. This has the advantageof directly mapping the
logical documentstructureto the type systemin an effective
way. Furthermore,some of the common data definitions and
behaviors for similattypes can be reused.The disadvantages
that type creation (adiscussedn Section5) is more difficult.
Information such aghe characteristicsof elementshaveto be
obtained from the DTD to generate the ng\pes as part of the

whose DTD specifies segmentation of text storage, as describedype hierarchy.

in the following subsection.

The concept of monomedia typlas beenintroducedto group
variants that are logically equivalent. An instarafea subtype

of type Monomedia (say aUideoObject which is an
instanceof Uideoledia) may havea numberof variants, as
discussedpreviously. Instancesof monomedia types store
referencedo all of their variants. Thus, allidecObject has
references to its variants which are instances of
AtomiclUideo. A monomedia object can have only variants of
the sametype associatedwith it; for example,Uideoledia
can only contairitomicUideo objects.

In this paper, we do not discuss the details of how we menut|
represent the contents afonomediaobjects. Our approachto

representing the textual part of multimedia documentsis

describedin [OSEV95]; the video modeling approach is

discussedn [LOS96b] and the image model is presentedin

[LOS96a]. We have not yet done extensive work on audio

representationthough the types areimplementedand usedin

our demonstration applications.

3.2 Element Type System

The element type system is a uniform representation of
elementsin a DTD and their hierarchical relationships. Each
logical elementin a DTD is representedy a concretetype in
the element type system.

An important design decision relatesto the “shape” of the
elementtype system.SGML, asa grammar,is fairly flat but
allows free composition of elements. This, coupledwith the
requirement to handle multiple DTDs withihe samedatabase,
suggeststhat the type system also be flat, consisting of
collections of types (one collection for each DTmjrelatedby
inheritance. This simplifieshe dynamictype creationwhena
new DTD is inserted(to be discussedn Section 5). However,

As a result of this design decision, the system provalest of
built-in types that constitute the kernal of the elementtype
system. These typemodel characteristicghat are commonto
all or some DTDelements.Figure 4 depictsan abstractedview
of the element typesystem. The entire systemis rootedupon
the abstract supertypglement. Onegroup of elementtypes
contains the HyTime elements, elementsconforming to the
HyTime architectural forms. Aecondgroup contains what we
call MM (MonoMedia) elements,elementsconforming to our
own MM architecturalforms. The MM elementsconstitute a
bridge betweenthe elementtype system and the atomic type
system, between the logical and physical dimensions of
documents. Eachof the MM elementsholds a pointer to an
atomic type object. A third group containsall the “standard”
SGML elements. Within eachof thesegroupsis a core set of
built-in abstractelementtypes. All other elementtypes that

Document

=" /\

AnnotatedElement Structured

N\ 7

StructuredAnnotated

Figure 5. Standard Element Type System

www.manaraa.com

may bedefined,i.e., concreteelementtypes correspondingto
DTD elements,are derivedfrom one of these abstractbuilt-in

in the particular element's tag. With user-specifiedtext
segmentation,annotationsare relative, consisting of a start-

types. Figure 5 shows some of the standard core element typeskey and end-key. These keys are associated in a dictionary with

TypeElement, the supertypeof all elementtypes, contains
the data membersdocument and parent, together with
member functions to access them. Datamberdocument , of
type Document, points to the multimedia document that
contains the element. The introduction of this attribemables
eachelementto know its document.Since SGML documents

have a tree structure, each element, except the root element, has

a parent. The data memberparent modelsthis structureby
pointing to the element’s parent element. Thpe of parent

is Structured sinceall parentelementsmust be structured
elements with child nodes (this is further discussed below).

Type Structured is a supertypefor all elementsin the DTD
that arepotentially non-leaf nodesin the documenttree. Such
elementshave a complex content model, meaning that the
content model is not ENPTY or #*PCOATA. Elementswith a
complex content modeaiay have child elements.Thatis why
structured elements must maintain referencesto their child
elements. Typ&tructured has data members that kepck

of these references and member functions that access them.

For efficiency reasons,all textual componentsof a document
are, by default, storedtogether as one text string [OSEV95].
Eachtextual component(e.g., paragraph,emphasis,etc.) has
anannotationassociated with it that indicates thtart andend
index of the object’s text in the text string. Annotations are
not only useful for elements that contain textual data
(#*PCOATRA) but also forother elementsthat have to be located
within the text string to display them properly (e.g., figure,
link). Type AnnotatedElement is the abstractype that has
the data members that maintain these annotations. For
elements that are both structured and annotated, a type
StructuredAnnotated is multiply derived from
Structured and AnnotatedElement to serve as their
supertype.

While this defaulttext storagemodel avoids fragmentationof
the documenttext into numerousobjects and facilitates text
retrieval and text searching, it leadsto expensive document

updating and may not be suitable for lengthy documents. Under

this model, the modification of text in a documentrequires
modification of all annotationsthat follow or span(i.e., asa

parent element) the changed text. Thus, a small changehmar

front of a long document requires annotatigrdatesfor nearly
all the elementsaswell as (potentially) a string copy of the
entire document text.

To addressthis problem, the text storage model has been
augmented by means of a typg,omicCompoundText, anda
text segmentationfacility that respondsto the useof a “text-
seg” attributefor elementsin the DTD. This allows the DTD
writer to specify which elementsare to be maintained as
separatetext segments. The attribute can be given a default
token value that can be over-riddenby the documentauthor.
Thus, while theDTD writer bearsthe initial responsibility for
determiningthe desiredgranularity of text segmentation,the
document author caaver-ride the defaultspecifiedin the DTD
by specifying an alternative value for the “text-seg” attribute

3 The decisionto use such system-specificattributesas “text-seg” and
“reusable” (Section 4) does not violate the SGhtincipal of document
portability, even though these attributes may be semantigeningless

areferencdo anfAtomicText (atext segment)object andan
offset into the string in that object. The hash table
implementationof the dictionary insuresrapid lookup. User-
specified text segmentsestedwithin other user-specifiedext
segmentsare handledappropriately as a simple sequenceof
segments Text that intervenes between user-specifiedtext
egments is treated as a separate segment.

Current work involves developing a simple interface for
updating documentsbasedon insertion and deletion using
HyTime's tree location address(treeloc) for specification of
elements in the document tree. Both insertion and deletion will
involve validation by the SGML parser.

In order to provide a consistent way handling DTD elements
that refer to atomic objects, we have introduesatherspecial
attribute namedMM (M onoM edia) for such elements. The
value of the MM attribute is fixed in the DTD to a value that
identifies the appropriatatomic type. The mechanismof the

MM attribute closely parallels that of the HyTime attribute,
described in thdollowing sub-section,which identifies a pre-
defined architectural fornio which the elementmust conform.
Essentially, this constitutes a set of MM architectural forms for
our system which supplement the standard HyTime architectural
forms? In fact, some elements can be definedisto conform

to both a HyTime architecturalform and an MM architectural
form. Someof the kernal MM elementtypes are shown in
Figure 6.

Element

/ Stream
Image

VariantElement Audio

%

Audio
Variant

Video Text

Stext
Image
Variant

Video Text
Variant Variant

SText
Variant

Figure 6. MM Element Types

For eachconcreteatomic type there is a pre-definedelement
type which contains a pointer to an object of the
correspondingatomic type. If, for example,the DTD defines
an elementMylmage with an MM attribute fixed to the value
imageVariant a new type will be generatedthat is subtyped
from the pre-definedclass ImageUariant, which contains a
data member that points to 8homicImage. In this case, the
elementiyImage must have attributes, namely QoS data, and
content model that conform to the MM architecturalform for
imageVariant The image and its required QoS data are all stored
directly in the atomic object.

4 This work was baseduponthe First Edition of the HyTime standard.
The Second Edition contains standardizationsfor new architectural

in the context of another document processing system. Their contributionforms which could have benefitedour designof the MM architectural

to our system is essentially to add customizable efficiencies.

forms.

www.manaraa.com

This way, we can exploit outomic type systemand maintain
a one-to-onecorrespondencéetweenconcrete elementtypes
and elements defined e DTD. The advantagesare two-fold.
First, thereis a cleardistinction andinterface betweenatomic
types and elementtypes. Atomic types model the primitive
monomedia objects whereas element types model eleriremts

DTD. Second, this clear separation simplifies the interaction of

other system componentgith the databaseFor example,the
QoS negotiator module, developed bpatnerresearchgroup,
dealsexclusively with the atomic types, completely ignoring
the element type system.

For type checking, it is very usefulfor an object to know its

type. To achieve this, the data member type has been
introduced as a static member of each conattmentclass. It

is initialized to point to a meta-typeobject that specifiesthe
type of the element. Each element type has a meta-type
associatedwith it (e.g., type Article has the meta-type
ArticleType). The meta-type object contains the name of

the element as it appearsin the DTD and other useful
information that can be queried. Meta-tyes discussedully

in Section 3.4.

3.3 Presentation Type System

Presentation of multimedia documents may involve
complicated scenarios which require synchronization of
various media, the placement wdrious objects on the screen,
and QoS considerations. The algorithms to meet these
requirementsare outside the scope of the multimedia DBMS.
However, it should be possible to store in the database
presentation related data for a document that is thenlséde
presentationtools. In general,the presentationdatainvolves

the spatio-temporal relationships between the various objects.

The design challenge is how to model these relationships
within the framework of the SGML/HyTime standard.In our

system, we make use of severalarchitecturalforms that are
defined within HyTime. Our system is not a full HyTime

engine. As aackground,the HyTime standards divided into

modules, eaclof which describesa group of conceptsthat are
representedy architecturalforms (AFs). The modulesinclude
the base module, the measurement modhke)ocation address
module, the hyperlinks module, the scheduling modaieithe

rendition module. Each module may use certain featureshar
modules lower down in the hierarchyius the location address
moduledefinesAF’s which are usedin the rendition module.
EachHyTime DTD must declarethe namesof the modulesit

requires.

To represent relatively simple spatial at@nporal constraints
between document elements, we tise finite coordinatespace
(FCS) architectural form defined in the scheduling module.
This, in turn, requires features tife measuremenaéndlocation
modules.

HyTime models space and time using axes of finite dimensions.

A finite coordinate space is a set of such axes. All
measurementsare associated with axes. The units of
measurement along axes are catjednta An extentis a set of
rangesalong the various axes defining the FCS. An event
correspondsto an extent in the FCS. An event schedule
consists of one or more events. Exteats specifiedusing the
ext | ist AF, events using thevent AF, andeventschedules
using the eusched AF. The documentinstance associatesa
dataobject with the event. The semanticsand the mannerin

which the events are rendered are defined by the application.

To representspatio-temporalrelationships, we define a FCS

y axis

A X axis

Event

Extent

Time Axis
Figure 7. Finite Coordinate Space

consisting of three axes: the x and y axes for spatial
relationships of objects on screen, and the time axis for
temporal relationships (Figure 7).

The representationof this ideain the databaserequiresthe
definition of a number of HyTime architectural forms. Of e
architecturalforms definedas part of the HyTime standard,we
have implemented hydog dimspec¢ axis, event link, fcs,
exlist, and evsched HyE lement is the supertype of all
HyTime types in the element type system. Its immediate
subtypescorrespondto the AFs we have implemented (Figure
8). Following the HyTime standard,all HyTime elementsin
the DTD must havéD andHyT ime attributes. Thd D is used as
a unique identifier to make elementreferencespossible. The
HuTime attribute specifieghe architecturalform to which the
element belongs. Types Uideo, Stext, and Audio are
directly derivedfrom the HyTime type Event _AF. They use
HyTime events for synchronization purposes.

Element

HyElement

HyDoc_AF // \ Evsched_AF

Dimspec_AF Extlist_AF
Axis_AF Fcs_AF

Event_AF

Figure 8. HyTime Element Types

link_AF

3.4 Meta-Types

The meta-type system roughly parallels the element type
system. Like the built-in elementtypes, which function as
abstract supertypesfor the concrete DTD-specific element

www.manaraa.com

ElementType

N

AnnotatedType AF_Type

MonomediaType DataStreamType

EventType AxisType

VariantType
Figure 9. Partial Meta-type System

types, a directedcyclic graph of built-in meta-typesprovides

used by the HyTime and MM architectural forms.

The top levels of the built-in meta-typesystemare shown in
Figure 9. In all, there are five levels in this kernal type
hierarchy, which utilizes multiple inheritance in parts of the
lower levels. This meta-typesystemis describedn detail in
[EM96].

4. SUPPORT FOR MULTIPLE DOCUMENT
STRUCTURES

One fundamental requirementof a multimedia DBMS for
SGML/HyTime documentsis that it shouldbe ableto support
multiple DTDs by creating types that are induced by these
DTDs. This is essential if the multimedia DBMSt@ supporta
variety of applications. The system must be able to analyze
new DTDs and automatically generate the types ¢batespond
to the elementsthey define. In addition, the DTD must be an

object in the database so that users can run queries like “Find all

DTDs in which a ‘paragraph’ element is defined.”

the supertypes for the concrete meta-types that are generated byn® components that have been implemented to support

the Type Generator.

For each concrete element type thagéneratedrom a DTD, a
corresponding meta-type is generated. These meta-types
perform two important tasks:

1. They store metainformation about the elementsin the
DTD, such as the element nam#wir attributes,andthe
supertypesfrom which the correspondingelementtypes
are derived. This information is necessary for
instantiating the appropriate element instances and
setting their attributes.

2. They define virtual create functions to instantiate
persistent objects representing document element
instances. These are referred tdrestantiation methods

Single instancesof thesemeta-typesare createdas persistent
objects in a database destined for document instances

conforming to a particular DTD. The instantiation methods that

are implemented in the generated code can create the
corresponding element objects, parameteriaedordingto the
data extracted by an SGML document parser during the
automated document insertion process. Virtual function
resolution ensuresthat any meta-type object will create the
appropriate object(s) when its instantiation method is
invoked.

The meta-type system is rooted in the base type
ElementType. This base type contains all the meta
information: name, attributes, and supertypésalso declares
and defines member functions that fall into the following
categories:

1. The instantiation methods. These are virtual
functions, mentionedpreviously, which get redefinedin
the generated meta-typ&hereare separatefunctions for
structuredelements(with a complex content model) and
unstructured elements (with a simple content model).

2. Functions for setting attributes. There are non-
virtual functions that loop through attribute lists or

provide general attribute setting functionalities. A virtual

function for setting specifiattributesis redefinedin the
generated element types.

3. Functions for determining special attributes.
Thesefunctions take care of special attributes that are

multiple DTDs are depicted in Figude A DTD Parser parses
eachDTD accordingto the SGML grammardefined for DTDs.

While parsing the DTD, a datastructureis built consisting of

nodesrepresentingeachvalid SGML elementdefinedin the
DTD. EachDTD elementnode contains information about the
element,suchasits name,attribute list and content model. If

the DTD is valid, aType Generator is usedto automatically
generate C++ code that defines a new ObjectStoré fypeach
element in the DTD. Additionally, code is generatediéfine a
meta-type for each new element typkloreover, initialization

codeis generatedand executedto instantiate extents for the
new elementobjects and to createsingle instances of each
meta-typein the specified database. A 0td object is also
created in the databas&his object containsthe DTD name,a
string representatiorof the DTD, anda list of the meta-type
objects that can be used to create actual element instaezs
documents are inserted into the database.

There are twamportant problemsthat needto be addressedn
this process. Both of theseare abstractionproblemsthat can
reducethe complexity of the multimedia type system and
thereforereducemaintenancetime anderrors. First, if two or
more DTD elements in theameDTD definition sharecommon
features,then this feature should, ideally, be automatically
extracted and promoted to an abstract supercl&ss.example,
in a prototype news-on-demandype system, the two types,

Uideo andAudio both shared a common duration attribute, so

the abstract supertypkemporal wascreatedto promotethis

feature. If the feature is a common content model, this factoring

is straightforward. Otherwise,the problem is harderto solve.
Even if attributes of different elements have gznenameand
specification, they may be semantically unrelated.

Second,common element definitions across different DTDs
should be representecdby a commontype in the type system.
However,thereis no easy solution to this problem since it
leads to the well-known semantic heterogeneity problem,
studied extensively within the multidatabase community.
Briefly, the problem is one of beingble to determinewhether
two elementsare semanticallyequivalent. This problem has
also beenstudiedin the programminglanguagesfield, where
there are many different definitions for type equivalence. For

5 By ObjectStoretype, we mean a C++ class defined to be used
persistentlyby ObjectStore. This includes creating a persistentclass
extent for instances of the class.

www.manaraa.com

example, two typesre nameequivalentif they havethe same
name. However,this would not be a good definition of type
equivalencen our modelsince two different DTDs might use
the same name tdescribesemantically different elements,for
example, &ignature in a Thesis DTDandaSignature in
a Symphony DTD. Similarly, programminglanguagesdefine
two types to be structurally equivalent if the components
recursively have the same names and types. Thisatsaylead
to faulty equivalencies. For example,Caption andTitle
could be structurally equivalent,eachhaving a content model
that is#*PCOATA. However,they are semanticallydifferent, a
differencethat may only becomeclearin the context of what
composite objects can contain them. Since thigot atrivial
problem, we have chosen to giup someabstractionin favor
of a semantically “safe” type system.

This does not mean, however, that we have completely
abandoned type re-use across DTDs. We re-usattmic types
such asitomicAudio, AtomicImage andAtomicText, as
well as the high-level abstract supertypes such as
Structured andthe HyTime and MM kernal types in the
elementtype system. Thesetypes are safe to re-usebecause
they have well defined semanticsthat appear across many
document types. For thgpecific elementsin a given DTD, we
createnew types derived from the abstractsupertypes.Name
conflicts between elements miifferent (uniquely named)DTDs
areresolvedautomatically by using the DTD nameas a prefix
during type creation (e.g. ArticleSection,
BookSection).

In addition to re-use through atomic typasd abstractelement
supertypes, wéiave provided a mechanismfor the DTD writer
to specify which elements in a DTD are to be treaedeusable
across all the DTDs in the system. This is specified by
explicitly using a “reusable® attribute in an element's
definition. Then, if a reusable type tfiat namedoesnot exist
in the system at the time the DTD is instantiated, it getsited
along with reusable types for all its implicitly reusable
descendants.

If such a reusable type (or any of its descendaaitspdyexists

in the system, the incoming element definition (and its

descendants) is validated to ensure that the old and theypesw
definitions are compatible. If compatible, no new class is

created. If not, an error report is generatedcontaining valid

definitions for the invalid elementswhich can later be pasted
into the DTD in place of the invalid definitions. A dedicated
database maintains information about reusable element
definitions, as well as a record of which DTDs utilize a

particular reusable element.

Metatype classes ardso generatedor eachreusableelement.
An instance of a metatype class is capable of creatingbdect
of its associated type during document instantiatibtowever,
for annotated elements (generally elements with textual
content) a single reusablemetatypeinstanceis not sufficient
since the annotation of an object must also be recordedin a
DocumentRoot’ object particular to the DTD (e.g.
BookRoot). Inthese cases, metatype clasdesvedfrom the
reusablemetatypeclassesmustalso be generatedin the DTD

specific code. An instanceof the specific metatypeis needed
for eachDTD in the databaseusing the reusable annotated
element. For non-annotatecelements,a single instance of a

reusable metatype isufficient for creatingobjects of reusable

6 See Footnote 3.
"DocumentRoot is one of severalauxilliary classesthat lie outside
the atomic, element, or meta-type type systems.

types for any DTD.

This facility for reusabletypes can significantly reducethe
amountof generatectodein a system that contains multiple
DTDs sharing commonly defined elements. Such reusable
elements can later be uniformly queried across multiple
document types.

TheDTD Manager in Figure 1 stores the DTD ithe database
as an enhancedbject that can be usedfor parsing documents
andfor other purposes.This is done after type creation. As
soon as a DTD object is stored in the database, SGML
documents of that type can be insertéc DTD is internal toa
document, i.e., the DTD is in tHBOCTYPE declarationsubset,
it mustfirst be removedand processecy the DTD parserand
manager before the document can be inserted in a database.

5.AUTOMATIC DOCUMENT INSERTION

One of the serious shortcomings of many multimedia DBMS
projects is the unavailability of tools for the insertion of
documents into the databaddany systemshave facilities for
querying the database once the documents are insarigdbut
no tools exist to automatically insert documents. This is
generally considered to beutsidethe scopeof databasevork.
One of our sub-projects has concentratedon coupling the
multimedia databasewith a retrofitted SGML parser,so that
SGML documentscan be created, using existing authoring
tools, and automatically inserted into the database.

The general architecture fohis coupling is depictedin Figure
10. The SGML Parser acceptsan SGML documentinstance
from anAuthoring Tool, validates it, and forms a parse tree.
The Instance Generator traverses the parse tree and
instantiates the appropriate objects in the database
correspondingto the elementsin the document. These are
persistentobjects storedin the databasehat can be accessed
using the query interface.

| Authoring
L Tools

SGML

Document
Instance N
DTDs o M O
| &
() 3]
Parse [& P Type E"’O
Tree |&Y System ;\
Types ~2=r"" A 5 \
A SGML 3
e\
Instance T\ ¢ Documents © O
Generator C++ ~ N @
Objects I] Users
Multimedia DBMS

10. Automatic Document Insertion

The parser is based on a freeware application cagdls. It
was modified to incorporate the following changes:

1. The DTD usedfor parsing the documentinstance is

8 This parserwas developedby JamesClark and is available on the
Internet.

www.manaraa.com

fetched from the multimedia database.

The output is passed the InstanceGeneratoras a parse
tree insteadof producing parsedtext output. This output
includes a text string for thdocumentthat is stripped of
markup, togetherwith alinked list of nodescontaining
annotations into the string, an attribute list, and pointers
to parent and next nodes.

The parserdoesnot produceany output for the Instance
Generator unless the documentisor-free. In the event
of errors, error messages are generated.

While the parsercomponentis independentof any particular
DTD, the Instance Generatoris DTD specific. The specific
library linked to the parser is the one bdilbm codegenerated
for the specific DTD.

Much of the instance generating code in the system was
discussed in Section 3.4 on meta-tytgpes. Objectinstances
of all the meta-typesrequiredby a DTD are persistently stored

in the DTD object. For each node in the parse tree, the
appropriatemeta-typeobject is found by querying the DTD’s
meta-typelist. The appropriate Createlbject method is
invoked on this object, which in turn invokes a method for
setting attributes according to the data in the parse tree node.

Though most of the instance creatibhghavioris implemented
in the meta-types,somebehavior is implementeddirectly in

the element types. Onadementtype objects are createdby a
meta-type object, they themselvescan perform some of the
instantiation work. The elementtypes may implement three
specific instantiation behaviors: SetChild,

SetSpecificAttribute, andResolueRef.

TheSetChi|d behavior sets pointers in the parafta newly
created object. Each structured object maintaihistaof all its
child objects as well as lists faachdiffering child type. The
SetAttribute methodin Element Type loops through all

the attributes and invokes GSetSpecificAttribute

methods specific to eachelement type. The ResolueRef

method implements the behavior of resolving an element’s
references. Ithe attribute’s declaredvalue type is IDREF, the
resolution of the attribute is deferred until the end of the
documentinstantiation process. This referenceresolving
approach is similar to a pass-and-a-half compiler.

6. RELATED WORK

Among the numerous multimedia DBMS describedin the
literature, there are three object-orientedsystems supporting
SGML/HyTime documentswhich warrantcomparisonwith our
own.

6.1 HyperStorM

HyperStorM (Hypermedia Document Storage and Modeling)
project currently undertakenat GMD-IPSI (Germany) has
similar goals to ours but is built upon the object-oriented
DBMS VODAK®. The Structured Document Databasemponent
[BA96] of HyperStorM, which investigates various object-
oriented technologies fostructureddocuments,s the research
effort that most closely resembles our system.

9 VODAK s itself built upon ObjectStore. It utilizes ObjectStore’s
persistent storage management,but implements its own modeling
language (VML) and query language (VQL). The application
programmer codes in these languages, insteassiofyC++. The VML
code is converted by the VODAK compiler infb++ code that s linked
to the VODAK and ObjectStore libraries.

In the first version of HyperStorM’s Structured Document
Database,D-STREAT [ABH94], every elementin the DTD

corresponded to a class in tatabaseand every elementin a

documentcorrespondedo a databaseobject. Textual content
was fragmentedacrosstheseobjects, ratherthan being stored
as a continuous text string, like in our default approach.
Although this design was efficient in declarative queriesand
documentcomponent updates,there was a high performance
overheadin accessoperations involving entire documents,
document insertions, and text-based searches.

The current version [B6h95] provides a hybrid approachfor
physical documentrepresentatiorthat is configurable by the
DTD designer. In this version, the DTD designer can use
special attributes to specify whiaddementsshouldbe flat. In
each flat element, theextual content of all nestedelementsis
storedas one continuousstring, including markup. Indexing
mechanisms are similarly configurable.

The StructuredocumentDatabasehandlesa new DTD by first
parsing it with a parser generator, which isexttensionof the
AmsterdamParser(ASP), that generatesan SGML document
instance of a super-DTD. As well, the parser generator
generates a document parser that DTD. The resulting super-
DTD instancethen gets parsedby an ASP extension for the
super-DTD. This parseralidatesthe documentand generatesa
script, which in turn createsdatabaseobjects to representthe
DTD and generatesa configuration file for optimization of
document insertion and querying. For each element in the DTD,
new classes of the metacladsEMENT_TYPE arecreatedusing
the VODAK metaclass featureMoreover, special FLAT_TYPE
classes are created to model flat elemefis.support HyTime,
a metaclass is defined for each architectural form.

Whereasthe Structured Document Database uses VODAK’s
metaclassfeatureto dynamically add classesto the database
schema, ousystemdynamically generatesC++ codethat gets
linked into ObjectStoreapplications. Moreover, we do not
rely on externaldatafiles, suchas configuration files, outside
the control of the database for document insertion or querying.

6.2 HyOctane

A distributed multimediainformation systembeing developed
at the University of Massachusetts|[KRRK93, BRRK94]
consists of an SGML parser, an ObjectStore databasefor
storing HyTime documents,andthe HyTime engine HyOctane
for accessingand presenting the documentinstances. The
databaseschemais basedon one specific DTD, the HDTD (a
HyTime conforming DTD for interactive multimedia
presentations).

The systemis designedin three layers: an SGML layer, a
HyTime layer, and an application layer. The layers are
instantiated consecutively. Aocumentis first instantiatedin
the SGML layer as instances of document, element, and
attribute. The HyOctaneengine then queriesthe SGML layer
for data to instantiate the HyTime layer. Finally the
application processis invoked to instantiate the application
layer by querying the SGML and HyTime layers. The
application layer contains a type for each element in the DTD.

In contrast to our system, the HyOctasystemas describedin
[BRRK94] doesnot support the automatic addition of new
DTDs to the system.However,the authorsclaim their system
can be easily extended to support otbdiDs. The designof a
newer version of HyOctane [RBP96], in fact, involves an open-
DTD approach.

www.manaraa.com

6.3 VERSO

VERSO [CACS94], developed at INRIA rance,is an object-
orienteddatabasesystemfor SGML documents. It is built on
top of O, to exploit its sophisticated type system and
extensible query language$DL.

Using an extendedversion of the Euroclid SGML parser,
VERSOmapsDTDs into O, schema,and documentinstances
into correspondingobjects. Thereis no native support for

HyTime; however,the authorsclaim that their querylanguage
extensions are particularly well suited for multimedia and
hypermedia documents.

While VERSO models SGML constraints tihe datamodel, our
systemenforcesthose constraints through the SGML parser.
We also have HyTime support explicitly buitito the system.
Our textual storagenodelis also inherently more efficient for
document retrieval than the fragmented model in VERSO.

7. CONCLUSIONS

In this paperwe have describedan object-orientedmultimedia
DBMS that is compliant with SGML/HyTime. The system, as
described here, is operatiorad has beenintegratedwith the
other components (continuous media file system, QoS
negotiation, synchronization and client modules) of the
Broadband Services Project to provide a demonstration
prototype. Ourbaseimplementationplatform is IBM RS6000

workstations running AlX 4.1.4. The implementation language

(for the multimedia DBMS component) is C Set++, whiclhe
IBM’s implementation of ANSI C++ for the AIX platform.

The primary contributions of this researchasreflectedin the
capabilities of the system, are the following:

1. It is an object database thedn store not only meta-data
about multimedia objects, but also multimedia objects
themselves. This facilitates querying over multimedia
data. A rich set of operations can be performedon
database objects to select documents or their
components. Multimedia objects and meta-datacan be
queried as first-class objects. For example, we cpolsle
a query to find “all news documentsfrom the CBC
betweenthe years 1993 to 1995 containing video of
Prime Minister JeanChretienwith a minimum framerate
of 10 frames per second.”

2. ltis implemented as an opemd extensible systemwith
facilities to incorporateoutsiderepositories. The current
version supportslinkages to a continuousmediaserver;
in the future, we intend to incorporate more general
external repositories.

3. The documentmodel is compliant with SGML/HyTime
standardsgnabling the useof tools developedfor these
standards. Pre-existing SGML documentcollections can
be readily inserted into a database.

4. The system can automatically support multiple DTDs
through codegenerationandthereby store objects from
different document types in one logical database.

5. It provides facilities for the automatic parsing of
multimedia documents and their insertion into the
database.

We are currently involved in extending tBgstemin a number
of directions. First, we are improving the modeling

capabilities of the system.In this regard,we are working on
the design of a documentversioning mechanisif and the
automatic generation of indexes and queries.dai, our query
engines andnterfaceshave beencustomizedto specific DTDs
and applications. These interfaces have been written in
Smalltalk and AlXwindows.

The seconddirection is the expansion of system capabilities
by introducing more of the featuresthat are common in
traditional DBMSs. In particular, we are building multimedia-
specific querymodelsandlanguagesthat are easierto use and
more efficient than general query models and languages.We
have defined,andarein the processof implementing, a text-
basedquery language, called MOQL [LOSO097], basedon the
standard OQL query language defined by ODMG [Cat®#.are
also building a visual interface on top of this language that will

support dynamic and incremental querying. In order to optimize
the execution of multimedia queries, we are developing content-

based indexingechniquesto facilitate accessto imagesbased
on the spatial relationships among objector example, the
user should be able to ask for “all images that show Bill
Clinton in front of the White House andext toJean Chretien”.
Our current approach involves extensions to 2D strings
[CSY87] in order to improve the search time [NOL97].

Finally, we are studying architectural improvementsto our
system.Along theselines, we are investigating appropriate
distribution architectureswherebythe multimedia data that is
stored on multiple serverscan be transparentlyaccessedby
users. In this regard, system interoperability becomes an
important issue sincenultimediadatais likely to be storedin
varying repositoriesin different formats. The results of this
work will be reported in future papers.

REFERENCES

[ABH94] K. Aberer, K. Béhm, and C. Huser. “The
Prospects of Publishing Using Advanced
DatabaseConcepts,” In Proceedingsof the
Conferenceon Electronic Publishing pages
469-480, April 1994.

K. Béhm. “Building a Configurable Databse
Application for Structured Documents,”
Arbeitspapiere der GMD 942, GMD-IPSI
Darmstadt, 1995.

K. Bdéhm and K. Aberer. “HyperStorM—
Administring Structured Documents Using
Object-Oriented Database Technology,” In
Proceedings of the ACM SIGMOD
International Conferenceon Managementof
Data, page 547, June 1996.

J.F. Buford, L. Rutledge, J.IRutledge,andC.
Keskin. “HyOctane: A HyTime Engine for
MMIS,” Multimedia SystemsJournal 1(4),
February 1994.

V. Christophides,S. Abiteboul, S. Cluet, and
M. Scholl. “From Structured Documentsto
Novel Query Facilities,” InProceedingsof the
ACM SIGMOD International Conferenceon
Management of Data pages 313-324, 1994.

R.G.G. Cattell (ed.). The Object Database

[Boh95]

[BA96]

[BRRK94]

[CACS94]

[Cat95]

10 ObjectStore’s versioning facility was architecturally flawed and
consequently removed from its latest release, 5.0.

www.manaraa.com

[CSY87]

[DD94]

[Gold90]

[EM96]

[1SO86]

[1S092]

[KRRK93]

[LLOWO1]

[LOS96a]

[LOS96D]

[LOS97]

[LOS097]

[NMHO6]

Standard: ODMG-93, Release 1.2, Morgan
Kaufmann, 1995.

S.K. Chang, Q.Y. Shi andC.W. Yan. “Iconic
Indexing by 2D Strings,” |IEEE Trans. Pattern
Analysis and Machine Intelligence 9(3):
413-428, 1987.

S.J. DeRose and D.G. Durand. Making
Hypermedia Work —A User's Guide to
HyTime Kluwer Publishers, 1994.

C. F. Goldfarb.The SGML Handbook, Oxford
University Press, 1990.

S. ElI-Medani. Supportfor DocumentEntry in
the Multimedia Database, M.Sc. Thesis,
University of Alberta, Department of
Computing Science,1996. Also available as
Technical Report 96-23
(http://ftp.cs.ualberta/pub/TechReports/1996/
TR96-23).

International Standards Organization.
Information Processing —Text and Office
Information Systems —StandardGeneralized
Markup Language (ISO 8879), 1986.

International Standards Organization.
Hypermedia/Time-based Structurihgnguage:
HyTime (ISO 10744)1992.

J.F. Koegel, L.W. Rutledge, J.L. Rutledgand
C. Keskin. “HyOctane: A HyTime Engine for
an MMIS,” In Proceedings of the ACM
Multimedia Conference, pages 129-135,
1993.

C. Lamb, G. Landis, J. Orenstein, and D.
Weinreb. “The ObjectStoredatabasesystem,”
Communications othe ACM, 34(10): 50-63,
October 1991.

J.Z. Li, M.T. Ozsu, D. Szafron. “Spatial
ReasoningRules in Multimedia Management
System,” InProc. International Conferencen
Multimedia Modeling pages 119-133,
November 1996.

J.Z. Li, M.T. Ozsu,D. Szafron.“Modeling of

Video Spatial Relationshipsin an Objectbase
ManagemeniSystem,” In Proc. International

Workshopon Multimedia DBMS pages124-

133, 1996.

J.Z. Li, M.T. Ozsu, D. Szafron. “Modeling
Video Temporal Relationships in an Object
Database Management Systerin”’Proc. SPIE
Multimedia Computing and Networking
(MMCN97), pages 80-91, February 1997.

J.Z. Li, M.T. Ozsu,D. Szafronand V. Oria.
“MOQL: A Multimedia Object Query
Language”, Third International Workshop on
Multimedia Information Systems Como,
Italy, September 1996.

G. Neufeld, D. Makaroff, and N. Hutchinson.
“Design of a Variable Bit Rate Continuous
Media Server for ATM Network,” IfProc. SPIE

[NOL97]

[OSEV95]

[PS97]

[RBP96]

[Scho6]

[WLE+97]

Multimedia Computing and Networking
(MMCN96), January 1996.

Y. Niu, M.T. Ozsuand X. Li. “2D-h Trees:An
Index Schemefor Content-BasedRetrieval of
Images in Multimedia Systems”, I|EEE
International Conference on Intelligent
Processing Systems 1997 (IEEE ICIPS’97),
Beijing, China, October 1997.

M.T. Ozsu,D. Szafron,G. EI-Medani, and C.
Vittal, “An Object-Oriented Multimedia
Database System for News-on-Demand
Application”, Multimedia Systems 3: 182-
203, 1995.

P. Pazandakand J. Srivastava. “Evaluating
Object Database Management System
Functionality to Support Multimedia,"|IEEE
Multimedia Fall 1997.

L. Rutledge, J.F. Buford, and R. Price.
“Mobile Objects and thédyOctaneDistributed
Hyperdocument Server,” Computers &
Graphics: Special Issue on “Mobile
Computing and Graphics”20(5), 1996

M. Schéne.A Generic Type System for an
Object-OrientedMultimedia DatabaseSystem,
M.Sc. Thesis,University of Alberta, Dept. of
Computing Science, 1996.
(http://ftp.cs.ualberta/pub/TechReports/1996/
TR96-14).

J.W. Wong, K.A. Lyons, D. Evans, R.J.
Velthuys, G.v. Bochmann, E. Dubois, N.D.
Georganas, G. Neufeld, M.T. Ozsu, J.
Brinskelle, A. Hafid, N. Hutchinson, P.
Iglinski, B. Kerhervé, L. Lamont, D.
Makaroff, and D. Szafron. “Enabling
Technology for Distributed Multimedia
Applications”, IBM SystemsJournal 36(4),
1997 (in press).

www.manaraa.com

